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Abstract 

This article provides an overview of the principles behind distributed intelligence and the justifications for further research in this area. 

Since the nature of the interaction is relevant to the solution paradigm, we proceed to categorise prevalent DIS systems in light of the 

interactions they often display. We describe three prevalent paradigms for distributed intelligence and provide examples of their use in 

multi-robot systems. These paradigms include bio-inspired, organisational and social, and knowledge-based, ontological. We next 

examine the issue of work allocation, which arises often in multi-robot systems, and demonstrate how the strategy to solving it varies 

greatly depending on the paradigm used to abstract the problem. We conclude that the paradigms are not equivalent, and that choosing 

the right one depends on the particular restrictions and needs of the application at hand. More research is required to help system 

designers choose the best abstraction (or paradigm) for a specific challenge. 

 

Introduction 

intelligence that is spread out throughout a network 

Systems of creatures working together to reason, 

plan, solve problems, think abstractly, grasp 

concepts and language, and learn are referred to as 

having "distributed intelligence." In this context, 

we use the term "entity" to refer to any self-aware 

thing, whether it a person, a robot, a piece of 

software, a piece of hardware, or anything else with 

a brain. In such setups, several actors often focus 

on certain facets of the overall operation. Humans 

have evolved to work in groups, so we're all used to 

sharing knowledge across a variety of minds. Chief 

Executive Officer, Chief Operating Officer, Chief 

Financial Officer, Chief Information Officer, and 

so on are all examples of titles held by members of 

corporate management teams. Specialists in 

medical oncology, surgical oncology, plastic and 

reconstructive surgery, pathology, and other related 

fields make up oncology patient care teams. The 

military also makes use of distributed intelligence, 

as seen in special forces A-Teams.hone your skills 

in the areas of warfare, technology, medicine, and 

communications. Personnel aboard a military 

aircraft carrier, for instance, may be divided into 

subunits such as catapult crew, landing signal 

officers, ordnance men, plane handlers, etc. 

Humans have obviously realised that these teams, 

by using experts who work together effectively, can 

perform complicated jobs extremely rapidly. The 

goal of distributed intelligence in computer science 

and related subjects is to design systems that 

include software agents, robots, sensors, 

computers, and even humans and animals (like 

search and rescue  dogs) that can collaborate as 

effectively as human teams. There is little doubt 

that such systems have the potential to solve 

several significant problems, such as urban search 

and rescue, military network-centric operations, 

gaming technologies and simulation, computer 

security, transportation and logistics, and many 

more
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Distributed Intelligence and Its Domain 

Researchers are finding a wide variety of 

paradigms that might be used to successfully 

implement distributed intelligence. Some forms of 

distributed intelligence are not suited to the 

aforementioned paradigms. Therefore, it is crucial 

to learn about the diverse forms of dispersed 

intelligence that might emerge in distinct contexts. 

The different possible interactions between entities 

in a distributed intelligence system may be used to 

get a better knowledge of the domain space. We 

find it useful to consider interactions along three 

axes, as shown in Figure 2: the nature of the 

objectives involved, whether or not the entities 

involved are aware of one another, and whether or 

not the entity's activities contribute to the success 

of the team as a whole. Systems are categorised 

based on whether or not their constituent parts 

pursue separate or common objectives. The 

systems are classified into two groups, aware and 

unaware, along the dimension of awareness of 

others. In this sense, "conscious" refers to a 

capacity for an entity to reflect on the behaviour 

and motivations of its teammates. Although non-

aware robots may detect the presence of nearby 

objects and adjust their position accordingly, for 

example, they are unable to reason about their 

colleagues' intentions or anticipate their next 

moves. The notion of stigmergy, in which things 

communicate with one another without exchanging 

direct messages, underlies the operation of many 

"un aware" systems. Finally, we classify systems 

into those in which a person's activities contribute 

to the success of the group as a whole (yes) and 

those in which they do not (no) (no). A floor-

cleaning robot, as part of a team of floor-cleaning 

robots, is an example of an entity whose activities 

further the aims of others. The floor cleaning 

efforts of one robot assist the other robots in the 

team avoid having to clean the same area twice. It 

is clear that these divisions of the domain space are 

approximations, yet we nevertheless find them 

useful for learning about the most common 

interactions in real-world scenarios. This subspace 

is a representation of the many interactions that 

may be found in distributed intelligence systems. 

The following are typical methods of 

communication: 

 

In the following paragraphs we describe these types 

of interactions in more detail. Perhaps the simplest 

type of interaction is the collective interaction, in 

which entities are not aware of other entities on the 

team, yet they do share goals, and their actions are 

beneficial to their teammates. An example of this 

type of intraction in multi-robot systems is the 

swarm robotics work of many researchers (e.g., 

(McClurkin 2004; Matara’s 1995; 

 

Figure 1: Categorization of types of interactions in systems of 

distributed intelligence. 

Kube & Zhang 1993)). This work focuses on 

creating systems of robots that can perform 

biologically-relevant activities such as searching 

for food, travelling in large groups, herding 

livestock, maintaining a formation, and so forth. 

When combined with a greater number of robots, 

the global aim is generally realised as an emergent 

aspect of the local interactions, with the robots in 

these systems often performing relatively basic 

local control rules. The second kind of interaction 

is cooperative interaction, which occurs when the 

involved entities are aware of one another, have 

similar objectives, and take steps that benefit their 

teammates. For example, in multi-robot systems, 

robots could cooperate to move a box (e.g., 

(Gerkey & Matari'c 2002)), clean up a jobsite (e.g., 

(Parker 1998)), conduct a search and rescue 

operation (e.g., (Murphy 2000)), or even explore 

distant planets (e.g., (Stroup et al., 2006)). In such 

setups, robots may need to coordinate their use of 

the shared workspace so that they don't impede one 
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another's progress toward the system's overarching 

aim. However, the robots' efforts are mostly 

concentrated on collaborating to accomplish a 

shared objective.  

Robots with their own objectives, who are aware of 

their colleagues, and whose activities contribute to 

the success of the team's overall objectives provide 

a third form of interaction in distributed 

intelligence systems. Collaborative refers to the 

subset of the domain space in which entities 

cooperate to attain their separate but compatible 

objectives. In this context, we distinguish between 

the cooperative do main space and the ability of 

entities to work together to assist others in better 

achieving their own objectives. We are used to 

seeing cooperation in human research teams, where 

each individual has their own area of specialty that 

contributes to the group's success. While everyone 

on the team is working toward the same common 

goal—completing their assigned portion of the 

research—their efforts will be amplified by the 

synergistic effect of working with others who bring 

unique perspectives to the table. Most of these 

partnerships are also cooperative, and any group 

may become cooperative by shifting its focus to the 

bigger picture and revaluating its aims. 

Collaborative teamwork may be shown by a 

collection of robots working together to achieve 

individual goals.  

In the event that a robot's sensors prevent it from 

reaching its destination, it may be able to 

collaborate with other robots to achieve its 

objectives by pooling its resources and enhancing 

the sensory capabilities of each member. Alliances 

like this have been shown in (Parker & Tang 2006; 

Vig & Adams 2006). When it comes to distributed 

intelligence, coordinative interaction is the fourth 

and last form of interaction. Entities in such 

systems are aware of one another, but they are not 

working toward a shared objective, and their 

activities are not conducive to the success of the 

team as a whole. These conflicts often arise when 

many robots are working in the same area. 

Coordination among the robots is essential if they 

are to cause the least possible disruption to one 

another. In these contexts, it is not uncommon to 

use multi-robot route planning (e.g., (Kloser& 

Hutchinson 2006; Guo & Parker 2002)) or traffic 

control (e.g., (Asama et al. 1991; Yuta & Pre mute 

1992; Wang 1991)) approaches. Besides, we might 

have added a third dimension to our domain space 

to classify systems according to whether they (1) 

help other entities achieve their objectives, (2) don't 

influence other entities' ability to achieve their 

goals, or (3) hurt other entities' ability to achieve 

their goals. This would allow us to design a novel 

kind of interaction in which the participants all 

operate in accordance with their own self-interest, 

are aware of one another, and yet impede progress 

toward the objectives of the other participants. This 

is the essence of the antagonistic sphere, where 

entities conspire against one another. Many 

researchers have devoted time and energy to this 

question in the context of multi robot systems, 

specifically in the context of multi robot soccer 

(see, for example, (Kitano et al. 1997; Browning et 

al. 2005; Veloso, Stone, & Han 1999; Stone & 

Veloso 1999)). There is no denying the military 

utility of this kind of cooperation. 

Models for Decentralized Intelligence 

There are as many different models for creating 

distributed intelligence as there are different forms 

of interactions in systems based on distributed 

intelligence. Each paradigm provides a distinct 

level of abstraction over the issue space, allowing 

the system designer to gain insight into effective 

approaches to solving the challenge. Whether it's 

the structure of ant colony or human community, 

these models often draw parallels. Paradigms may 

be useful tools, but they aren't universally 

applicable across all interaction dynamics. This 

section provides an overview of many prevalent 

distributed intelligence models, with a special 

emphasis on how they apply to systems with 

several robots. It is important to keep in mind that a 

key difficulty shared by all of these paradigms is 

figuring out how to bring about global coherence 

via the local interaction of things. Different levels 

of issue abstraction reveal complementary 

approaches to resolving this difficulty. 

Three commonly used paradigms for building 

systems of distributed intelligence include: 

 • Bioinspired, emergent swarms’ paradigm,  

• Organizational and social paradigms, and  

• Knowledge-based, ontological, and semantic 

paradigms.  

We discussed concepts of the bioinspired, emergent 

swarms’ paradigm in the previous section, as part 

of the description of collective interactions. In this 

paradigm, the need for communication between 

entities is greatly reduced by assuming the ability 

of the entities to sense relevant information in their 

local environments (i.e., staggery). The application 

requirements in these problems allow for simple 

action protocols, or control rules, that are identical 

on each entity, and that lead to the desired group 
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behaviour. An example local control rule under this 

paradigm that can cause all the agents/robots to 

aggregate (as in a swarm) is 

 

This is an effective paradigm for applications that 

need the same work to be done in a decentralised 

environment, where the job doesn't need 

sophisticated entity-entity interactions and all 

entities are generic. Both the inverse issue, where 

we want to derive the local control rules given a 

desired global behaviour, and the former problem, 

where we want to anticipate the global behaviour 

given a set of local control rules, provide 

formidable research problems. Flocking, schooling, 

foraging, chaining, searching, sorting, herding, 

aggregation, condensation, dispersion, 

confinement, formations, harvesting, deployment, 

and coverage are just some of the geographically 

dispersed applications that might benefit from this 

paradigm. However, more complicated frameworks 

for solving various kinds of interactions are needed. 

Task Assignment in a Multi-Robot 

Environment: Competing Models 

After looking at three different approaches to 

distributed intelligence systems, we'll quickly 

contrast how each deal with a typical problem in 

multi-robot setups: dividing up the work. As was 

discussed before, job allocation is a common 

problem in multi-robot applications when the 

team's goal is broken down into individual tasks. 

Various robots can tackle different tasks, and vice 

versa. While it is possible to work on independent 

activities at the same time, dependent tasks must be 

completed in a sequential order that accounts for 

their interdependencies. Once the list of jobs is 

defined, the next step is to find the optimal way to 

assign robots to jobs so as to maximise some 

objective function. This is the issue of dividing up 

work. As previously shown by Gerkey and 

Matara’s (2004), optimum solutions to the broad 

work allocation issue are NP-hard. As a result, 

approximations that are acceptable in practise are 

often used as solutions to this issue. Consider the 

multi-robot work allocation problem, and how each 

of the above paradigms might approach it. To 

begin, a large number of identical robots would 

normally be assumed by the bioinspired method of 

work allocation. Any robot that is nearby and 

aware of the need of completing a job might 

volunteer to do so (i.e., the task is allocated to that 

robot). Robots may utilise staggery to figure out 

what to do without resorting to direct 

communication. If a robot fails, it may be swapped 

out for another one. All robots should follow this 

idea for best results. Second, much as we discussed 

before for multi-robot soccer, roles might be used 

to organise the distribution of tasks. Robots choose 

positions that are most suited to their capabilities, 

and each duty includes a number of distinct 

responsibilities. In this context, robots may have a 

wide range of sensing, computing, and effector 

skills; they need not be standardised. 

The market-based approach to allocation was also 

proposed as a different organisational strategy. 

With these methods, robots negotiate for jobs by 

openly discussing their capabilities and offering 

bids based on their predicted contributions. 

Typically, assignments are established by giving 

each job to the most efficient robot possible. The 

Contract Net Protocol (Smith, 1980) is 

foundational here because it was the first to tackle 

the issue of how agents might negotiate to 

collectively accomplish a set of tasks. The M+ 

architecture was the first to use a market-based 

method for the purpose of locating tasks for many 

robots (Botelho & Alami 1999). In the M+ method, 

each robot makes its own strategy to complete its 

objective. Next, they employ social norms that 

allow for the gradual merging of plans as they 

negotiate with other team members to gradually 

adjust their activities to best serve the team as a 

whole. Last but not least, the knowledge-based 

method is used for work distribution in multi-robot 

teams by modelling colleague skills. Among the 

many potential variants is the ALLIANCE 

technique (Parker, 1998), in which robots simulate 

the capacity of team members to carry out the 

duties of the system by watching team member 

performance and collecting important task quality 

information, such as the time to task completion. 

These models are then used by the robots to decide 

which jobs would be best for the team as a whole. 

The selection of assigned tasks in this method does 

not need open dialogue. The use of trained models 

of teammate skills opens the door to other methods. 

These job allocation examples show that there are 

numerous possible solutions to a given issue in 

multi-robot systems, depending on the abstraction 

paradigm used. Benefits and drawbacks of each 

paradigm vary depending on the context. The 

appropriate paradigm depends on the specific 

limitations and needs of the application at hand. 
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Conclusions 

In this article, we've introduced several key 

concepts in distributed intelligence and discussed 

the many possible interactions between distributed 

systems as well as some of the most popular 

approaches to achieving distributed intelligence. 

We have utilised examples from the area of multi-

robot systems to show, compare, and contrast the 

various interactions and paradigms in order to 

better understand the difficulties. The takeaway 

from these debates is that the appropriate paradigm 

for a given problem depends on the specifics of the 

application at hand. We also point out that different 

robot paradigms may be used concurrently in 

complex systems. An organisational paradigm can 

be used to define roles for the high-level 

abstraction, a knowledge-based approach can be 

taken to multi-robot mapping, a knowledge-based 

modelling approach can be taken to mobile 

network deployment, and a bio-inspired approach 

can be taken when creating a mobile sensor 

network (Howard, Parker, &Sukhumi, 2006). The 

task of system designers is to develop and use 

paradigms that are tailored to the unique 

requirements of each application. 
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